Abstract
L-theanine is an amino acid with a unique flavor and many therapeutic effects. Its enzymatic synthesis has been actively studied and γ-Glutamylmethylamide synthetase (GMAS) is one of the promising enzymes in the biological synthesis of theanine. However, the theanine biosynthetic pathway with GMAS is highly ATP-dependent and the supply of external ATP was needed to achieve high concentration of theanine production. As a result, this study aimed to investigate polyphosphate kinase 2 (PPK2) as ATP regeneration system with hexametaphosphate. Furthermore, the alginate entrapment method was employed to immobilize whole cells containing both gmas and ppk2 together resulting in enhanced reusability of the theanine production system with reduced supply of ATP. After immobilization, theanine production was increased to 239 mM (41.6 g/L) with a conversion rate of 79.7% using 15 mM ATP and the reusability was enhanced, maintaining a 100% conversion rate up to the fifth cycles and 60% of conversion up to eighth cycles. It could increase long-term storage property for future uses up to 35 days with 75% activity of initial activity. Overall, immobilization of both production and cofactor regeneration system could increase the stability and reusability of theanine production system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.