Abstract

Silver nanoparticles (Ag NPs) are used as antimicrobial agents due to their high-efficiency, broad-spectrum disinfection activity. However, the agglomeration and stability problems caused by excessive release of silver ions (Ag+) have severely restricted their developments. Herein, a novel silver/polyethyleneimine/reduced graphene oxide (Ag/PEI/rGO) antibacterial material featuring good dispersibility and permeability was rationally designed, thus benefiting for the capture of bacteria due to the introducing of highly-cationic PEI modifier and controllable release of biocidal agents (Ag+). Compared with Ag/rGO, the Ag/PEI/rGO has excellent stability and shows a more efficient sterilization efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with 100% germicidal efficiency with low orders of dozens of ppm. In addition, the outstanding biocompatibility of this Ag/PEI/rGO antibacterial material endows it with promising potential in sterilization applications, which is expected to solve the infection problem caused by bacterial biofilm formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call