Abstract
Defect engineering is a promising method for improving the performance of MoS2 in various fields. In this study, sulfur-defect-enriched MoS2 (SD-MoS2) nanosheets were fabricated via a facile microwave-hydrothermal strategy in 10 min for tetracycline (TC) adsorption applications. The introduction of sulfur defects in MoS2 induced more exposed unsaturated sulfur atoms at the edge, enhancing the interaction between the adsorbent and antibiotic and improving the adsorption activity of the antibiotic. Density functional theory calculations further revealed that sulfur defects in MoS2 could alter the electronic structure and exhibited low TC adsorption energy of -2.09 eV. This work provides a new method for fabricating MoS2 nanosheets and other transition metal dichalcogenide-based adsorbents with enhanced antibiotic removal performance and a comprehensive understanding of antibiotic removal mechanisms in SD-MoS2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.