Abstract

In this work, we theoretically investigate the enhanced Terahertz (THz) radiation by an intense laser pulse assisted with sub-cycle pulses (SCP) in the framework of quantum theory. By numerically solving the Schrödinger equation, the production and the dynamics of ionized electrons are analyzed. The simulations show that the SCP plays different roles for different time delays in the generation of THz radiation, such as increasing the production of the ionized electrons and manipulating their trajectories. The time-frequency analysis of the THz radiation is also carried out, which indicates that the THz radiation mainly occurs where the SCP is launched, and the THz radiation mainly comes from the formation of the asymmetric electric current. Finally, the scheme of dual sub-cycle pulses is studied, and we find that the THz radiations can constructively or destructively interfere, which leads to the formation of the streaky structures of radiation spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.