Abstract
Existing anchor graph based multi-view clustering methods can overcome the problem of high computational cost in traditional multi-view clustering methods. However, the anchor points selected from high-dimensional data often contain irrelevant noise and outliers, which would affect the clustering performance. To address this issue, we propose an embedding anchor based multi-view clustering method, called enhanced tensor based embedding anchor learning (ETEAL). Specifically, we unify the learning process of latent embedding space, anchor points, and anchor graphs into a common framework, which eliminates noise and redundant data in the original space and enhances the synergistic optimization between the components. Meanwhile, we employ an enhanced tensor strategy to constrain the embedding anchor graphs, which exploits the higher-order relationships between views and recovers the global low-rank property of the embedding anchor graphs. Finally, we develop an anchor graph fusion strategy, which significantly reduces the huge overhead of traditional graph fusion that requires the construction of complete graphs. Experimental results on eight benchmark datasets show that the proposed method significantly outperforms other state-of-the-art methods in terms of scalability and clustering accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.