Abstract

To improve the mechanical performance of ultra-high-performance alkali-activated concrete (UHP-AAC), the surface of steel fiber was modified using an electrolyte solution containing ethylenediaminetetraacetic acid (EDTA). The longer the steel fiber was exposed to the EDTA-electrolyte solution, the more the longitudinal peeling of the steel fiber surface was induced and the surface roughness increased. By exposing the specimens to the solution for up to 6 h, the highest fiber bond strength (11.96 MPa) and a maximum tensile strength of UHP-AAC (14.7 MPa) were obtained. The mechanical properties of UHP-AAC were also investigated using conventional long straight and twisted steel fibers. The increase in bond strength due to the triangular cross-sectional shape and untwisting torque of the twisted fiber had an overall positive effect on the mechanical properties of UHP-AAC. However, the best tensile performance of UHP-AAC, in terms of tensile strength and energy absorption capacity, was obtained when the straight steel fibers surface-refined by the EDTA-electrolyte solution for 6 h were adopted. Based on the Pearson correlation coefficient, the Weibull distribution was applied as a crack width prediction model. The results showed that the median microcrack widths formed in UHP-AAC were marginally influenced by the surface treatment using EDTA-electrolyte solution. However, the longer straight and twisted steel fibers produced wider microcracks than their counterparts. The greatly increased tensile strain capacity of UHP-AAC by using the surface-refined steel fibers was thus caused by the formation of more microcracks rather than the increase in the microcrack width.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call