Abstract

BackgroundThe objective of the present study was to investigate the effectiveness of acidic fibroblast growth factor delivered in collagen (aFGF/collagen) for promoting tendon–bone interface healing after anterior cruciate ligament (ACL) reconstruction in rabbits.MethodsACL reconstructions were performed in the right hind limbs of New Zealand rabbits. Each left long digital extensor tendon was harvested as an autograft, and collagen incorporating different concentrations of aFGF or same amount of collagen alone was applied at the tendon–bone interface after ACL reconstruction. The control group underwent ACL reconstruction only. There were high and low aFGF/collagen groups, collagen alone group, and control group (n = 21 rabbits per group). Histological and biomechanical analyses were performed at 4, 8, and 12 weeks postoperatively to evaluate the effect of aFGF/collagen on tendon–bone interface healing.ResultsResults of biomechanical tests showed that at both 8 and 12 weeks postoperatively, the elastic modulus and stiffness in both the high and low aFGF/collagen treatment groups were significantly higher than those in the control group and collagen alone group, with that in the high aFGF/collagen concentration group being the highest. Histological analysis showed that at 8 weeks, tightly organized Sharpey-like fibers were observed in both aFGF/collagen groups with new bone growth into the tendon in the high concentration group. At 12 weeks postoperatively, a fibrocartilage transition zone was observed in the bone tunnels in both aFGF/collagen groups, especially in the high aFGF/collagen group.ConclusionApplication of the aFGF/collagen composite could enhance early healing at the tendon–bone interface after ACL reconstruction, especially with the use of a high aFGF/collagen concentration.

Highlights

  • The objective of the present study was to investigate the effectiveness of acidic fibroblast growth factor delivered in collagen for promoting tendon–bone interface healing after anterior cruciate ligament (ACL) reconstruction in rabbits

  • We investigated whether delivery of aFGF incorporated within collagen at the tendon–bone interface during ACL reconstruction could promote tendon–bone healing

  • The rabbits were randomly divided into four groups (n = 21/group) as follows: (1) ACL reconstruction with an autograft, and 4 μg aFGF incorporated into 15 ml collagen applied in the bone tunnel [20]; (2) ACL reconstruction with an autograft and or 1 μg FGF incorporated into 15 ml collagen in the bone tunnel; (3) ACL reconstruction with an autograft, and 15 ml collagen applied in the bone tunnel; (4) ACL reconstruction with an autograft only

Read more

Summary

Introduction

The objective of the present study was to investigate the effectiveness of acidic fibroblast growth factor delivered in collagen (aFGF/collagen) for promoting tendon–bone interface healing after anterior cruciate ligament (ACL) reconstruction in rabbits. Arthroscopic reconstruction of the anterior cruciate ligament (ACL) with the hamstring tendon as a graft has been widely used in clinical practice. The graft is biologically fixed for subsequent healing at the tendon–bone interface. This results in a long healing time and uncertain healing strength, which limit the Tendon–bone healing can be divided into indirect versus direct insertions [1]. Indirect insertions use collagen fibers to connect tendon grafts and bone tunnels. Direct insertions are characterized by connection of the graft and

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.