Abstract

Template matching is an approach for signal pattern recognition, often used for biomedical signals including electroencephalogram (EEG). Since EEG is often severely contaminated by various physiological or pathological artifacts, identification and rejection of these artifacts with improved template matching algorithms would enhance the overall quality of EEG signals. In this paper, we propose a novel approach to improve the accuracy of conventional template matching methods by adopting the dynamic positional warping (DPW) technique, developed recently for handwriting pattern analysis. To validate the feasibility and superiority of the proposed method, eye-blink artifacts in the EEG signals were detected, and the results were then compared to those from conventional methods. DPW was found to outperform the conventional methods in terms of artifact detection accuracy, demonstrating the power of DPW in identifying specific one-dimensional data patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.