Abstract

Remote systems are essential for reducing risk to human workers from hazardous radiation and difficult work environments, while improving productivity and reducing costs. The major drawback of currently available remote manipulator systems is that teleoperation is slow and imprecise. The presented work focuses on enhancing remote operation of tools for D&D tasks by introducing teleautonomy and telecollaboration. In teleautonomy, the robot performs a given task autonomously, while the human operator intervenes in the process as a supervisor. In telecollaboration, the human operator is passively constrained by a virtual fixture, but is responsible for the motion. This work, sponsored by the US Department of Energy (DOE) Environmental Management Science Program (EMSP), builds on a reactive, agent-based control architecture and robot control technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.