Abstract

In this work, we study the influence of the proportion and halogen type present in heterojunctions of zinc oxide and bismuth oxyhalides ZnO@BiOX (Where X=Cl-, Br-, I- and several binary combinations of them) on the photocatalytic activity in the degradation of rhodamine-B (Rh-B) under visible light, as well as in two important emergent contaminants resorcinol and sulfadiazine. The materials were synthesized by a solvothermal process at 130 °C, starting from ZnO nanoparticles and BiOX precursors (Bi+ and X=Cl-, Br-, I- ions). It was found that the best combination of halogens was 75 % Br- and 25 % Cl- (ZnO@BiOBrCl bromine-chlorine ratio 3:1) forming a Z-type heterojunction with a time constant of τ = 5.6067 min (κ = τ-1 = 0.1784 min−1) in the degradation of Rh-B (C0 = 30 ppm, VRxn = 250 mL). The same composite degraded totally resorcinol in 250 min, and 85.2 % of sulfadiazine in 150 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.