Abstract

Hollow-structured carbon materials play a crucial role in research of biosensors, energy storage and nanomedicine as a kind of material with advantages like high surface area, tunable pore volume, excellent mechanical properties, and good biocompatibility. Herein, we developed a simple, facile and controllable method for synthesis of Fe3O4 nanoparticles encapsulated in hollow carbon nanocages (FNHCs) with SiO2 nanospheres as a sacrificial template. Owing to the unique structure of multiple Fe3O4 nanoparticles cores integrated with N-doped carbon nanocages, the as-synthesized FNHCs exhibited greatly enhanced peroxidase mimicking activity with extremely high signal-to-noise ratio of ∼91 fold. Also, it was found that the FNHCs possessed a higher peroxidase-like activity than that of other similar-structured Fe3O4 architectures (e.g. Fe3O4@C NPs). The resulting steady-state kinetic curve demonstrated the enzymatic activity of FNHCs with classic Michaelis–Menton kinetics following a ping-pong mechanism. On the basis of the superior enzymatic activity, the FNHCs performed as a high-efficiency peroxidase mimic, realizing facile, label-free, highly sensitive/selective colorimetric detection of H2O2 and glucose. Furthermore, the colorimetric sensor successfully determined glucose in patients’ serum samples with high accuracy and precision, suggesting great potential for real applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call