Abstract
Co-pyrolysis has been studied for its potential to recycle energy from biomass and waste tyres, as well as enhance the quality of the bio-oil. In this paper, the TG-FTIR-GC/MS technique and a fast-infrared heated reactor were used to investigate the co-pyrolysis behaviors and mechanism of waste tyres (WT) and corn stover (CS). Based on the TG-FTIR-GC/MS analysis, co-pyrolysis synergy promoted the production of methane and aromatics while inhibiting the formation of CO2. Co-pyrolysis products distribution shows that the best synergy occurred at a ratio of 30 % WT with the highest oil yield deviation of 19.67 % and the lowest water yield deviation of −13.30 %. Response surface method (RSM) was utilized to optimize the oil production and the highest oil yield of 30.25 wt% was acquired at a heating rate of 25 °C/s and a ratio of 40 % WT. According to the oil analysis, the light fraction of oil (gasoline and diesel) was more than 50 % in all conditions and there was a large number of aromatics (more than 30 %) presented in oil. The char characteristics indicated that several metals combined with -S radicals during co-pyrolysis which formed much metal sulfide and sulfate in chars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.