Abstract

Our study was conducted to investigate whether anticancer drugs, cisplatin (CDDP) and/or 5-fluorouracil (5-FU), can modulate Fas-mediated apoptosis in oral squamous cell carcinoma (OSCC) cell lines. When OSCC cell lines, NA and HSC-4, were treated with CDDP and/or 5-FU, Fas and its mRNA expression on the plasma membrane were enhanced. An increase in caspase-3 and -8 activities was then observed by the addition of agonistic anti-Fas antibody, CH-11. Apoptosis of OSCC cells treated with anticancer drugs were significantly enhanced by CH-11, whereas untreated cells were nearly resistant to apoptosis. Moreover, the combination of CDDP and 5-FU resulted in an increasing susceptibility to apoptosis. Caspase-3 and -8 inhibitors, but not caspase-9 inhibitor, reduced Fas-mediated apoptosis enhanced by the anticancer drugs. Furthermore, OSCC cells treated with anticancer drugs exhibited decreased cellular FADD-like interleukin 1-converting enzyme-inhibitory protein (c-FLIP) levels, whereas neither the Fas-associated death domain-containing protein (FADD) nor procaspase-8 changed the expression. Moreover, antisense oligonucleotide to c-FLIP confirmed that down-regulation of c-FLIP induced sensitization to Fas-mediated apoptosis. These results suggest that CDDP and 5-FU may enhance the susceptibility to Fas-mediated apoptosis through down-regulation of c-FLIP. From these findings, a new potential strategy may be developed to improve the efficacy of anticancer drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.