Abstract

It has been hypothesized that enhanced oxidant sensitivity of glucose-6-phosphate dehydrogenase (G6PD) deficient red cells(RBCs) is the underlying mechanism for drug- or chemical-induced hemolytic crises in G6PD-deficiency. To further test this hypothesis, we used an alloxanglutathione system to mimic oxidative stress and see how oxidative damage might affect RBC deformability. RBC deformability, a major determinant of RBC survival in vivo, was monitored by a laser viscodiffractometer. Under our experimental conditions, GSH alone had very little effect on the deformability of either normal or G6PD-deficient RBCs. In contrast, alloxan alone induced a small but significant decrease in the deformability of either normal or G6PD-deficient RBCs. Interestingly, alloxan and GSH together induced a further decrease in the deformability of either normal or G6PD-deficient RBCs. The decrease in deformability in G6PD-deficient RBCs was much more profound than in normal RBCs. In addition, an alloxan-vitamin C system produced a similar deleterious effect on RBC deformability as that produced by the alloxan-GSH system. Appreciable amount of hydroxyl radicals was generated by both alloxan-GSH and alloxan-vitamin C systems as evidenced by the production of hydroxylated products of salicylate which was used as a radical trap. Moreover, salicylate could ameliorate the deleterious effect of the alloxan system on the deformability of RBCs. Taken together, our results demonstrated that G6PD-deficient RBCs were particularly susceptible to oxidant-induced damage leading to a dramatic decrease in their deformability and thus provided strong support for the hypothesis that enhanced oxidant sensitivity of G6PD-deficient RBCs is the underlying mechanism for accelerated destruction of these RBCs in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.