Abstract

Solving partial differential equations (PDEs) using deep-learning techniques provides opportunities for surrogate models that require no labelled data, e.g., CFD results, from the domain interior other than the boundary and initial conditions. We propose a new ansatz of the solution incorporated with a physics-informed neural network (PINN) for solving PDEs to impose the boundary conditions (BCs) with hard constraints. This ansatz comprises three subnetworks: a boundary function, a distance function, and a deep neural network (DNN). The new model performance is assessed thoroughly in terms of convergence speed and accuracy. To this end, we apply the PINN models to conduction heat transfer problems with different geometries and BCs. The results of 1D, 2D and 3D problems are compared with conventional numerical methods and analytical results. The results reveal that the neural networks (NNs) model with the proposed ansatz outperforms counterpart PINN models in the literature and leads to faster convergence with better accuracy, especially for higher dimensions, i.e., three-dimensional case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.