Abstract

The nanometer-scale indentation of a crystalline surface produces nanostructures that evolve on a timescale that is inaccessible to existing imaging methods for the vast majority of surfaces. We have been able to observe the dynamic evolution of the freshly cleaved surface of a NaCl(100) crystal after indentation with an atomic force microscope (AFM) in air. Here we present sequential AFM images featuring vertical atomic resolution which show that atomic terrace motion is greatly enhanced by the AFM indentation. Moreover, some of the nanometric features generated by the indentation become reassimilated into the crystalline surface structure of the surroundings of the indentation over a period of time of the order of several minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.