Abstract

Pristine and transition-metal-doped Mn3O4 nanocrystals shaped in octahedrons have been synthesized by hydrothermal reduction of potassium permanganate and characterized by SEM/TEM, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical experiments. The results reveal that a multistep reduction process is taking place, and the introduction of doping ions causes a direct synthesis of single-phase Mn3O4 nanocrystals. To assess the properties of Mn3O4 nanocrystals for their use in supercapacitors, cyclic voltammetry and galvanostatic charging-discharging measurements are performed. The phase stability during cycling and charge-transfer behavior are greatly improved by doping with transition metal, and Cr-doped Mn3O4 nanocrystals exhibit a maximum specific capacitance of 272 F g(-1) at a current density of 0.5 A g(-1). These doped Mn3O4 nanocrystals could be a promising candidate material for high-capacity, low-cost, and environmentally friendly electrodes for supercapacitors. In addition, these results have verified the ability of doping to improve capacitive performances of spinel-structured transition-metal oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.