Abstract

Biomass-derived porous carbons have great potential as electrode materials for supercapacitors. However, their amorphous and micropore-dominated structures are unfavorable for the electrochemical kinetics, which will limit their rate capability and cycle stability. In this work, we reported a facile strategy to improve the capacitive behavior of porous carbons derived from Camellia oleifera shell by introducing carbon quantum dots (CQDs) with highly graphitization degree into the skeleton of porous carbons. Benefiting from the unique surface property of CQDs, the obtained CQD/hierarchically porous carbon composites (CQDs/HPC) possessed a well-developed porous structure with high mesopore content and moderate surface heteroatom doping. Furthermore, their charge/ion transfer kinetics were improved due to the formation of the conductive channels in the carbon skeleton as well as optimized pore structure and surface doping. Consequently, the optimized CQDs/HPC-2 presented a high capacitance of 259 F g−1 at 1 A g−1 and a high rate capability in 1 M H2SO4, which is much better than bare HPC. The assembled symmetric supercapacitors delivered an energy density of 8.61 (17.86) Wh kg−1 at the power density of 477 (954) W kg−1 in 1 M H2SO4 (1 M Na2SO4) solution and high long-term stability with 94 % capacitance retention after 20,000 cycles at 5 A g−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.