Abstract

Removing organic pollutants from wastewater is urgent for developing a sustainable ecological environment. A highly efficient visible light photocatalyst was synthesized through a sol–gel method using C/C composites (expanded graphite dipping in the phenol formaldehyde resin, EGC) coated with Ag, N co-doped TiO2. The as-prepared composites were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), N2 adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible light diffuse reflectance spectroscopy (UV–Vis-DRS). The XRD and N2 adsorption–desorption (BET) results revealed that the photocatalysts were composed of mesoporous structures mainly with anatase TiO2. The effects of Ag content and calcination temperature on the photocatalytic activity of Ag–N-TiO2/EGC photocatalysts were studied. The results showed that under visible light, the photocatalytic efficiencies of Ag1.0-N-TiO2/EGC (550 °C) obtained for the degradation of Rhodamine B (RB) and diesel are 7.4 times and 3.9 times higher, respectively, than those of N-TiO2/EGC with high mineralization. The enhanced photocatalytic activity of the Ag–N-TiO2/EGC composites was attributed to the porosity and flexible electron transport paths for formation of superoxide radicals. These characteristics assured Ag–N-TiO2/EGC photocatalyst as a high-efficiency photocatalytic material for organic pollutant degradation under visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.