Abstract

Photocatalytic materials such as Ag-coated ZnO nanoflowers, pristine ZnO nanoflowers and ZnO nanorods were synthesized by template-assisted method for the treatment of industrial waste water through photocatalysis. Electropolishing and anodization lead to the formation of alumina template. After that, hydrothermal treatment was carried out for the growth of ZnO nanoflowers and nanorods on the template. The morphology of synthesized samples was investigated by scanning electron microscope, X-ray diffraction patterns and energy-dispersive X-ray spectroscopy. XRD patterns of samples clearly indicate the well crystalline structure of synthesized materials. The presence of Ag in Ag-coated ZnO nanoflowers was confirmed by EDS spectral analysis and X-ray diffraction patterns. Grain size was found to be in the range of 10–25 nm as calculated by Scherer’s formula from XRD patterns. The sunlight-driven photocatalytic activity of Ag-coated ZnO nanoflowers, ZnO nanoflowers and ZnO nanorods was investigated and compared with each other. In addition, the stability and recovery of photocatalyst were also checked. Photocatalytic degradation experiment results indicated that Ag-coated ZnO nanoflowers had highest photocatalytic activity towards methylene blue dye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.