Abstract

Adding magnesium ions (Mg2+) to produce struvite is an important method to recover nitrogen and phosphorus from wastewater. Both the Mg2+ source and subsequent separation of struvite are key factors for the utilization of struvite. In this study, we developed an efficient method to recover nutrient salts from wastewater using sacrificial Mg anodes to generate struvite, with its simultaneous separation through cathode electrodeposition. The anode-released Mg2+ reacted with NH4+-N and PO43−-P in bulk solution to form struvite, which was more intense on the cathode surface due to the relatively higher pH environment from hydrogen evolution, resulting in most of the struvite being deposited on the cathode surface and simultaneously separated out of the bulk solution. Using a cathode with a higher solution-cathode interface area and relatively low current density facilitated struvite deposition. Results showed that under optimal electrolysis condition (5.76 A/m2, pH 8.5, 180 min, and 1.2:1.0 Mg:P), 91% of the undissolved substances as the phosphate precipitation were deposited on the graphite cathode surface, and the proportion of struvite in the deposition reached 41.52%. This study provides a novel electrochemical method for struvite synthesis and separation for the recovery of nitrogen and phosphorus from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.