Abstract
To analyze the physiological role of dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants expressing a human DHAR gene in chloroplasts were biochemically characterized and tested for responses to various stresses. Fully expanded leaves of transgenic plants had about 2.29 times higher DHAR activity (units/g fresh wt) than non-transgenic (NT) plants. Interestingly, transgenic plants also showed a 1.43 times higher glutathione reductase activity than NT plants. As a result, the ratio of AsA/DHA was changed from 0.21 to 0.48, even though total ascorbate content was not significantly changed. When tobacco leaf discs were subjected to methyl viologen (MV) at 5 mumol/L and hydrogen peroxide (H2O2) at 200 mmol/L, transgenic plants showed about a 40% and 25% reduction in membrane damage relative to NT plants, respectively. Furthermore, transgenic seedlings showed enhanced tolerance to low temperature (15 degrees C) and NaCl (100 mmol/L) compared to NT plants. These results suggest that a human derived DHAR properly works for the protection against oxidative stress in plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.