Abstract

Graphene nanoplatelets reinforced titanium matrix (GNPs/Ti) composites usually exhibit high strength but have low uniform elongation. Such limited mechanical properties are not suitable for the structural applications and is dangerous during service. In this study, a cocklebur-inspired nanoengineering was employed for the three-dimensional (3D) interface design in GNPs reinforced Ti composites (contained trace TiB whiskers, abbreviated as GNPs-(TiBw)/Ti). The enhanced strain-hardening capacity of GNPs-(TiBw)/Ti composites were attributed to the superior interfacial strain accommodation, the stiffened interfacial shear resistance and the toughened TiC layers. This work distinguishes itself from previous studies of GNPs/Ti composites by emphasizing the role of 3D interface structure for regaining the strain-hardening capacity of nanostructured composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call