Abstract

The sustainable supply of clean energy may depend on the hydrogen, which usually derives from steam electrolysis for SOEC. However, the current steam electrolysis using SOEC still faces many challenges, such as low catalytic efficiency, poor structural stability. We synthesize a series of La0.6Sr0.4FexO3-δ (LSFx, x = 0.8–1.2) materials, utilizing in situ exsolved metal (Fe) nanoparticles to construct a metal-oxide interface to enhance the performance of steam electrolysis and coking resistance. The active metal-oxide interface can effectively improve the performance of steam electrolysis. The H2 production reaches 4.52 mL min−1 cm−2 with the current efficiency of 97.81% at 1.6 V and 850 °C for the cell with LSF1.1-Ce0.8Sm0.2O3-δ cathode and anode. It shows excellent long-term stability and redox cycling capability after dozens of hours of operation. This research is of great significance for efficient hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.