Abstract

Preliminary studies have shown that silk fibroin can protect biomacromolecules from thermal degradation, but a deeper understanding of underlying mechanisms needed to fully leverage the stabilizing potential of this matrix has not been realized. In this study, we investigate stabilization of plasma C-reactive protein (CRP), a diagnostic indicator of infection or inflammation, to gain insight into stabilizing mechanisms of silk. We observed that the addition of antiplasticizing excipients that suppress β-relaxation amplitudes in silk matrices resulted in enhanced stability of plasma CRP. These observations are consistent with those made in sugar-glass-based protein-stabilizing matrices and suggest fundamental insight into mechanisms as well as practical strategies to employ with silk protein matrices for enhanced stabilization utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.