Abstract
Enhanced stability of a piezoelectric nanogenerator (PNG) was demonstrated using c- and m-axis GaN/V2O5 core–shell nanowires (NWs) by analyzing the capacitive coupling of the PNG’s output. The NW array grown on GaN thin film was embedded in polydimethylsiloxane (PDMS) matrix, following which the matrix was transferred to an indium (In)-coated PET substrate for achieving superior flexibility of the PNG. The stability of the PNG was enhanced by holding the NW PDMS composite with a PDMS polymer as a bonding material on the PET substrate. The inserted PDMS layer improved the lifetime of the PNG, however, because of the insulating nature of PDMS, the piezoelectric output of GaN NWs was coupled capacitively to In contact on PET substrate and it resulted in a slight degradation of piezoelectric output due to the voltage drop across the bottom capacitive contact. The maximum piezoelectric current was 64 nA and output voltage was 11.9 V from the PNG with c-axis NWs. While the PNG with direct bottom contact exhibited 57% output reduction after 72 000 operation cycles, the PNG with capacitive contact did not show any degradation in stability even after 150 000 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.