Abstract

Yttria stabilized hafnia (YSH) coatings have been fabricated by magnetron sputtering, a physical vapor deposition (PVD) method. Coatings of a mixed composition of hafnia (HfO2) and zirconia (ZrO2) (YSHZ) stabilized by yttria (Y2O3) were also fabricated in order to compare and contrast the resulting properties. The composition of the material was varied by varying the ratio of HfO2 and ZrO2 (4:1, 2:1, 1:1, 1:2 and 1:4) while keeping the Y2O3 stabilizer content constant at 7.5 mol%. Thermal and chemical stability along with the durability of the YSH and YSHZ coatings were evaluated by exposing the coatings to hot gases in a combustor rig. A nanoindentation technique was used to evaluate the mechanical properties. A diamond tipped, sharp nanoindenter with known geometry and mechanical properties was forced into the sample while both the force and indentation depth were recorded. Hardness (H) and Young's modulus were estimated for the YSH and YSHZ coatings. Atomic force microscopy was utilized to provide imagery of the indentation area on the sample surface. Residual stress analysis was performed using X-ray diffraction (XRD). The results from nano-indentation indicate that the YSH sample possesses values of hardness and Young's modulus as high as 18 GPa and 220 GPa, respectively. The residual stress estimated using XRD indicates very high compressive stress within the coatings. The stability and durability tests demonstrate the enhanced stability of YSH coatings in a hot gas environment created by burning natural gas with oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call