Abstract
In this paper we demonstrate that SWNTs and a covalent immobilization strategy enable very sensitive sensors with excellent long term stability. Organophosphorus hydrolase (OPH) functionalized single and multi-walled carbon nanotube (CNT) conjugates were exploited for direct amperometric detection of paraoxon, a model organophosphate. The catalytic hydrolysis of paraoxon produces equimoles of p-nitrophenol; oxidation was monitored amperometrically in real time under flow-injection (FIA) mode. OPH covalently immobilized on single-walled carbon nanotubes (SWNTs) demonstrated much higher activity than OPH conjugated to multi-walled carbon nanotubes (MWNTs). The dynamic concentration range for SWNT-OPH was 0.5–8.5 μmol L −1 with a detection limit of 0.01 μmol L −1 (S/N = 3). In addition to this high sensitivity, the immobilized OPH retained a significant degree of enzymatic activity, and displayed remarkable stability with only 25% signal loss over 7 months. These results suggest that covalent immobilization of OPH on CNTs can be used for specific immobilization with advantages of long term stability, high sensitivity, and simplicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.