Abstract
We show that, even when a polarization scrambler is switched off, PMF-based SA-BOCDR can operate with higher stability than that of standard silica-fiber-based systems. This leads to reduced cost and enables the use of the optimized state of polarization for higher sensitivity. After investigation of the strain/temperature dependencies of the Brillouin frequency shift and the Brillouin spectral power in the PMF, we show that the strain/temperature sensitivity of the PMF-based SA-BOCDR is 1.4 times the value of the standard silica-fiber-based configuration; we then demonstrate distributed temperature measurement with higher stability and sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.