Abstract
BackgroundA spinal cord injury (SCI) can result in severe impairment and fatality as well as significant motor and sensory abnormalities. Exosomes produced from IPSCs have demonstrated therapeutic promise for accelerating spinal cord injury recovery, according to a recent study.ObjectiveThis study aims to develop engineered IPSCs-derived exosomes (iPSCs-Exo) capable of targeting and supporting neurons, and to assess their therapeutic potential in accelerating recovery from spinal cord injury (SCI).MethodsiPSCs-Exo were characterized using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. To enhance neuronal targeting, iPSCs-Exo were bioengineered, and their uptake by neurons was visualized using PKH26 labeling and fluorescence microscopy. In vitro, the anti-inflammatory effects of miRNA-loaded engineered iPSCs-Exo were evaluated by exposing neurons to LPS and IFN-γ. In vivo, biodistribution of engineered iPSC-Exo was monitored using a vivo imaging system. The therapeutic efficacy of miRNA-loaded engineered iPSC-Exo in a SCI mouse model was assessed by Basso Mouse Scale (BMS) scores, H&E, and Luxol Fast Blue (LFB) staining.ResultsThe results showed that engineered iPSC-Exo loaded with miRNA promoted the spinal cord injure recovery. Thorough safety assessments using H&E staining on major organs revealed no evidence of systemic toxicity, with normal organ histology and biochemistry profiles following engineered iPSC-Exo administration.ConclusionThese results suggest that modified iPSC-derived exosomes loaded with miRNA have great potential as a cutting-edge therapeutic approach to improve spinal cord injury recovery. The observed negligible systemic toxicity further underscores their potential safety and efficacy in clinical applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.