Abstract

Nitrogen-Vacancy (NV) centers in diamond have been used in recent years for a wide range of applications, from nano-scale NMR to quantum computation. These applications depend strongly on the efficient readout of the NV center's spin state, which is currently limited. Here we suggest a method of reading the NV center's spin state, using the weak optical transition in the singlet manifold. We numerically calculate the number of photons collected from each spin state using this technique, and show that an order of magnitude enhancement in spin readout signal-to-noise ratio is expected, making single-shot spin readout within reach. Thus, this method could lead to an order of magnitude enhancement in sensitivity for ubiquitous NV based sensing applications, and remove a major obstacle from using NVs for quantum information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.