Abstract

Spin-orbit torques (SOTs) are studied in perpendicularly magnetized ultrathin Co films sandwiched between two heavy metals, Pt and Ta. A significant enhancement of the Slonczewski-like torque is achieved by placing dissimilar metals with opposite spin Hall angles on opposite sides of the ferromagnet. SOTs were characterized through harmonic measurements and the contribution by the Ta overlayer was isolated by systematically varying its thickness. An effective spin Hall angle of up to 34% is observed, along with a sizable field-like torque that increases with increasing Ta layer thickness. Current-induced switching measurements reveal a corresponding increase in switching efficiency, suggesting that by engineering both interfaces in trilayer structures, the SOTs can be significantly improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.