Abstract

Using a heavy-metal (HM) alloy layer in spin-orbit torque (SOT)-based devices is an effective method for obtaining a high current-spin conversion efficiency θSH. In this work, SOT-based spintronic devices with a Pt100-xRux-alloyed HM layer are studied by applying harmonic Hall measurements and magneto-optical Kerr effect microscopy to detect the θSH and to observe the process of current-induced magnetization switching. Both the highest θSH of 0.132 and the lowest critical current density (Jc) of 8 × 105 A/cm2 are realized in a device with x = 20, which satisfies the high SOT efficiency and low energy consumption simultaneously. The interfacial Dzyaloshinskii-Moriya interaction can be overcome by increasing the in-plane assist field. Meanwhile, the minimum in-plane field required for current-induced complete switching can be reduced to ±60 Oe. Our study reveals that using the Pt-Ru alloyed HM layer is an effective route for SOT application with enhanced performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.