Abstract

The apparent enhancement of spectral resolution is one of the attractive features of two-dimensional correlation spectroscopy (2D-COS). Highly overlapped adjacent bands often encountered in one-dimensional spectra may be effectively differentiated and identified by spreading peaks along the second dimension. This differentiating feature or selectivity is especially prominent in asynchronous spectra, where even a slight difference in the variation patterns of overlapped bands in response to a given perturbation results in the generation of cross-peaks. While cross-peaks in asynchronous spectra can identify signals originating from different moieties or bands, they do not effectively specify which regions of spectra actually share the same molecular origin. Overreliance on asynchronous spectra alone risks the potential false negative assessment or lack of sufficient specificity, leading to the failure of classifying signals into a reasonable set of component groups. The combined use of synchronous and asynchronous spectra coupled with the scaling techniques, elimination of anti-correlated negative synchronous peaks, and a robust line shape narrowing method provides a means to achieve both selectivity and specificity for resolution-enhancement of 2D-COS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call