Abstract

We report a chirped-pulse optical parametric oscillator (OPO) generating light pulses with an instantaneous-bandwidth much wider than the parametric gain-bandwidth of nonlinear crystals. Our numerical simulations show that a relatively high residual second-order-dispersion within the OPO cavity is required in order to achieve the maximum signal-bandwidth from an OPO system. Based on this principle, we constructed an OPO using a 3-mm-long PPLN crystal, which produced a signal wave with an instantaneous-bandwidth of 20 THz (at -20 dB) covering 1447-1600 nm, roughly twice as much as the phase-matching bandwidth of the nonlinear crystal. This scheme represents a promising technical route for generating high-repetition-rate, ultrashort optical pulses with a wide bandwidth at various wavelengths, which may benefit many applications, including optical coherence tomography, pulse synthesis and spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.