Abstract

The spatial resolution of the vector potential photoelectron microscope is determined by the maximum size of the cyclotron orbits of the imaged electrons at the surface of a sample. It is straightforward to calculate the spatial resolution for any imaged electron energy given the magnetic field strength. However, in low-energy secondary photoelectron images from an aluminium-calcium metal matrix alloy, we find the apparent spatial resolution is significantly higher than expected. A possible explanation for the enhanced resolution is that the low-energy cyclotron orbits are distorted when passing from one area of work function to another and the image is dependent on the surface field distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.