Abstract

Abstract Blind source separation receives increasing attention as an alternative tool for operational modal analysis in civil applications. However, the implementations on real-life structures in literature are rare, especially in the case of using limited sensors. In this study, an enhanced version of sparse component analysis is proposed for output-only modal identification with less user involvement compared with the existing work. The method is validated on ambient and non-stationary vibration signals collected from two bridge structures with the working performance evaluated by the classic operational modal analysis methods, stochastic subspace identification and natural excitation technique combined with the eigensystem realisation algorithm (NExT/ERA). Analysis results indicate that the method is capable of providing comparative results about modal parameters as the NExT/ERA for ambient vibration data. The method is also effective in analysing non-stationary signals due to heavy truck loads or human excitations and capturing small changes in mode shapes and modal frequencies of bridges. Additionally, closely-spaced and low-energy modes can be easily identified. The proposed method indicates the potential for automatic modal identification on field test data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.