Abstract

In this research, a series of CuZnTi-LDHs with different Cu2+/Zn2+ molar ratio were synthesized by co-precipitation method with the purpose of improving the sonocatalytic performance of ZnTi-LDH. All the LDH samples were synthesized by a facile co-precipitation process. The as-prepared LDHs were characterized by Powder X-ray diffraction (XRD), Field emission-scanning electron microscopy (FESEM), Transition electron microscopy (TEM), Brunauer-Emmelt-Teller (BET) analysis, and UV-visible diffuse reflectance spectroscopy (DRS) analysis. The results showed that Cu2+ substitution can significantly enhance the sonocatalytic properties of ZnTi-LDH. The Methylene blue degradation percentage over ZnTi-LDH reached 30% in 90 min, whilst this percentage reaches 71% over CuZnTi-LDH (1:1). The role of the Cu2+ incorporation on the observed enhancement in sonocatalytic performance was revealed by investigating the effect of radical scavengers on degradation efficiency and DRS spectra of ZnTi-LDH and CuZnTi-LDH (1:1). Benzoquinone (BQ), ammonium oxalate and tert-Bu lead to 22.5%, 53.5% and 74.6% decrease in degradation percentage by CuZnTi-LDH (1:1). However, the degradation efficiency showed 16.6%, 3.3% and 63.3% reduction in the presence of BQ, ammonium oxalate and tert-Bu respectively, in dye degradation by ZnTi-LDH. DRS spectra demonstrated that the band gap of the LDH decreases by Cu2+ substitution. The effect of operational parameters on sonodegradation was investigated as well. The kinetics of sonodegradation reaction obeyed the first order reaction kinetics with R2 of 0.95.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.