Abstract

Curcumin (CUR) is a low-solubility polyphenolic compound with many physiological functions. Cyclic β-1,2-glucans (cyclosophoraoses [Cys]), which contain rings of different sizes with degrees of polymerization ranging from 17 to 23, were obtained from Rhizobium radiobacter ATCC 1333, a soil microorganism. The complexation ability and solubility enhancement of cyclic β-1,2-glucans with insoluble curcumin were investigated. Phase-solubility analysis revealed that the stoichiometric ratio of the inclusion complexes was 1:1. The stability constant of Cys was 930 M−1, which was 7.68 times that of α-cyclodextrin (α-CD) and 2.09 times that of β-cyclodextrin (β-CD). The characteristics of the curcumin/Cys inclusion complexes were successfully determined by using Fourier transform infrared (FTIR) spectrometry, differential scanning calorimetry (DSC), nuclear magnetic resonance (1H NMR) spectroscopy, and scanning electron microscopy (SEM). Moreover, a 1:1 molecular model of the curcumin/Cys inclusion complexes was established through molecular docking analysis. These findings indicated that cyclic β-1,2-glucans successfully formed complexes with curcumin, which suggested that they could be used as solubility-increasing agents. To the best of our knowledge, this is the first report in which curcumin has been embedded into cyclic β-1,2-glucans resulting in an increase in its aqueous solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.