Abstract

Softwood lignocellulose is a potential feedstock for the production of biofuels and bioproducts. However, the highly cross-linked nature of softwood lignocellulose restricts enzyme access to its sugars. Thus, harsh pretreatment conditions (180-280 °C) and/or high enzyme loading are required to unlock sugars. These requirements negatively affect the economic viability of softwoods in biorefineries. Here we show that HPO pretreatment of pine and Douglas fir under a mild reaction temperature (50 °C) and atmospheric pressure enabled a high (∼80%) glucan digestibility with low enzyme loading (5 filter paper units (FPU)/g glucan). The dissolution and regeneration of softwoods disrupted the hydrogen bonding between cellulose chains, thereby increasing the cellulose accessibility to cellulase (CAC) values by ∼38-fold (from ∼0.4 to 15 m/g biomass). Examination of HPO-pretreated softwoods by cross-polarization/magic angle spin (CP/MAS), C- nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR) revealed that breaking of the orderly hydrogen bonding of crystalline cellulose caused the increase in CAC (higher than 11 m/g biomass), which, in turn, was responsible for the high glucan digestibility of pretreated softwoods. The HPO pretreatment process was feedstock independent. Lastly, 2D C-H heteronuclear single quantum coherence (HSQC) NMR showed that the lignin was depolymerized but not condensed; thus, the lignin can be available for producing high-value products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call