Abstract

The hydroxyl radical concentration-dependent yield of single-strand breaks (SSBs), obtained through correction of scavenging and hindrance effects caused by gold nanoparticles (AuNPs), for fluorophore- and quencher-labeled DNA on AuNPs was 10 times that of free DNA based on fluorescence measurements of X-ray-irradiated DNA on AuNPs. By comparing the fluorescence data that revealed the number of SSBs with the results of mass spectrometry measurements that detected the total damage to DNA, we found that SSBs dominated DNA damage for DNA on AuNPs whereas non-SSB damage dominated for free DNA. The yield of RNA SSBs under X-ray irradiation was similar to that of DNA in the presence of AuNPs, whereas free RNA was more resistive to radiation than DNA. These results indicated the enhanced SSBs were likely catalyzed through the conversion from nucleobase damage to SSBs by AuNPs. The outcome of this work impacts materials and environmental science, sensing, nanotechnology, biology, and medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call