Abstract
The disposal of reverse osmosis (RO) concentrate (ROC) is a critical challenge impeding the application of RO-based wastewater reclamation. Herein, we proposed an enhanced biotreatment approach for the simultaneous removal of nitrogen, phosphorous, hardness, and methylisothiazolinone (MIT) from ROC by suspended-solid phase cultivation of Scenedesmus sp. LX1. Repeated carrier addition, guided by the developed optimal carrier addition model, efficiently enhanced algal growth and contaminant removal through dynamically controlling the suspended algal density by cell attachment. The maximum algal growth rate (212.2 mg/(L∙d)) increased by 41% compared with the control, and the time needed for reaching the maximum algal biomass (906.7 mg/L) was shortened by 1 d, attributing to the mitigation of density restriction. 91.8% of nitrogen (30.2 mg/L) was removed with 5.5 mg/(L∙d) accelerating removal rate, and phosphate (3.7 mg/L) was completely removed within 1 d. Hardness precursors calcium and inorganic carbon were also removed in large amounts, 268.4 and 128.2 mg/L, respectively. Moreover, suspended-solid phase cultivation significantly mitigated the growth inhibition caused by MIT toxicity, enabled the algae to completely biodegrade MIT of extremely high concentrations (4.7 mg/L and 11.4 mg/L) in a short time. Our results demonstrate the feasibility of suspended-solid phase algal cultivation for simultaneously and effectively removing multiple main contaminants from ROC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.