Abstract

Trying to find clusters in high dimensional data is one of the most challenging issues in machine learning. Within this context, subspace clustering methods have showed interesting results especially when applied in computer vision tasks. The key idea of these methods is to uncover groups of data that are embedding in multiple underlying subspaces. In this spirit, numerous subspace clustering algorithms have been proposed. One of them is Sparse Subspace Clustering (SSC) which has presented notable clustering accuracy. In this paper, the problem of similarity measure used in the affinity matrix construction in the SSC method is discussed. Assessment on motion segmentation and face clustering highlights the increase of the clustering accuracy brought by the enhanced SSC compared to other state-of-the-art subspace clustering methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.