Abstract

The ERBB1/2/4 inhibitor neratinib causes plasma membrane-associated K-RAS to mislocalize into intracellular vesicles; this effect is enhanced by HDAC inhibitors and the combination of [neratinib + sodium valproate] is now a phase I trial (NCT03919292). The present studies were performed to understand resistance mechanisms that evolve following [neratinib + valproate] exposure. Exposure of pancreatic tumor cells to [neratinib + sodium valproate] initially reduced the expression and phosphorylation of ERBB family receptors, c-MET and c-KIT. Following a 24 h drug exposure and a further 24 h culture in drug free conditions, the effects on c-MET, c-KIT and most ERBB family receptors had returned to near baseline levels. However, the expression and phosphorylation of ERBB3 were increased which was associated with elevated AKT T308 phosphorylation. Knock down of ERBB3 significantly enhanced [neratinib + valproate] lethality, which was associated with greater inactivation of AKT, mTOR, p70 S6K and ERK1/2. The PI3Kα/δ inhibitor copanlisib also significantly enhanced killing after [neratinib + valproate] exposure. Copanlisib enhanced [neratinib + valproate] lethality via autophagosome formation and autophagic flux. Our data argue for further in vivo exploration as to whether copanlisib can be safely combined with [neratinib + valproate].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.