Abstract

ABSTRACTBiological nitrogen removal processes based on partial nitrification are promising for ammonium-rich wastewater treatment. In this study, a partial nitrification-denitrification double sludge system was applied to treat synthetic ammonium-rich wastewater. Metagenomic analysis of functional genes and metabolic pathways was conducted, also with the evaluation of system performance and nitrous oxide (N2O) emission. In the nitrifying sequencing batch reactor (SBRPN), the removal percentage of ammonium nitrogen reached to 99.98% with a high nitritation efficiency of 93.24%, and the N2O emission factor was 0.88%. In the denitrifying sequencing batch reactor (SBRDN), there was almost no nitrate nitrogen and nitrite nitrogen in the effluent, and the maximum N2O emission was 0.078 mg N/L. The dominant ammonia oxidizing bacteria was Nitrosomonas in SBRPN (13.6%), and the main potential denitrifiers in SBRDN were Thauera (14.6%), an uncultured genus in the Comamonadaceae family (4.0%), an uncultured genus in Rhodocyclaceae family (2.4%) and Comamonas (1.1%). Metagenomic analysis revealed that amo mainly distributed in Nitrosomonas eutropha (38.3%), Nitrosomonas europaea (27.1%), Nitrosomonas sp. GH22 (20.5%) and Nitrosomonas sp. TK794 (15.0%), and Bacteroidetes had the N2O reduction potential in SBRPN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.