Abstract

After reviewing the underlying framework required for computational function prediction in the previous chapter, we discuss two advanced sequence-based function prediction methods developed in our group, namely the Protein Function Prediction (PFP) method and the Extended Similarity Group (ESG) method. PFP extends the traditional homology search by incorporating functional associations between pairs of Gene Ontology terms based on the frequencies of co-occurrences in annotation of the same proteins in the database. PFP also considers very weakly similar sequences to the query, thereby increases its sensitivity and ability to predict low resolution functional terms. On the other hand, ESG recursively searches the sequence similarity space around the query to find consensus annotations in the neighborhood. The last part of the chapter discusses the network structure of gene functional space built by connecting proteins with functional similarity. Function annotation was enriched by predictions by PFP. Similarity to structures of protein-protein interaction networks and metabolic pathway networks is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.