Abstract

We demonstrate novel instrumentation for spontaneous Raman spectroscopy in biofluids, enabling development of a portable, automated, reliable diagnostics technique requiring minimal operator expertise to quantify disease markers. Label-free Raman analysis of biofluids at physiologically-relevant sensitivities is achieved using a microfluidic-embedded liquid-core-waveguide augmented with a unique circulation approach: thermal damage and spectrum variance is minimized, eliminating conventional limits on integration time for excellent signal-to-noise ratio and temporal stability. Machine-learning then optimizes spectrum processing, yielding quantitative results independent of end-user proficiency. Sub-mM accuracy is achieved in solutions of both high and low turbidity, surpassing the sensitivity of previous techniques for analytes with a small scattering cross-section, such as glucose. We attain a new record for label-free glucose measurements in an artificial whole-blood, achieving an accuracy up to 0.14 mM, well-exceeding the 0.78 mM accuracy required for diabetic monitoring, establishing our technique's potential to significantly facilitate portable Raman for complex biofluid analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call