Abstract

Monitoring non-contact high-frequency vibrations requires improving the sensitivity and linear response of iontronic pressure sensors (IPSs). In this study, we incorporate composite electrodes comprising silver nanowires (Ag NWs) and MXene into IPSs to enhance electronic conduction and pseudocapacitance. Moreover, we utilize a novel surface-pillar microstructure, along with an internally randomized multi-bubble structure within the dielectric layer, to significantly expand the linear response range of the sensor. The resulting IPS device demonstrates exceptional linear sensitivity, measuring approximately 153.83 kPa−1, across a broad pressure range of up to 260 kPa. Additionally, it exhibits long-term stability, rapid response and recovery characteristics, and remains functional underwater. Notably, these devices exhibit remarkable capabilities in monitoring ultrasonic vibrations and accurately identifying sound wave vibrations. The integration of composite electrodes, microstructure designs, and their compatibility with underwater applications positions these IPSs as highly promising tools for precise measurements and advancements in flexible electronics technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.