Abstract
Chloroplast glutathione reductase (GR) plays an important role in protecting photosynthesis against oxidative stress. We used transgenic tobacco (Nicotiana tabacum) plants with severely decreased GR activities by using a gene encoding tobacco chloroplast GR for the RNAi construct to investigate the possible mechanisms of chloroplast GR in protecting photosynthesis against chilling stress. Transgenic plants were highly sensitive to chilling stress and accumulated high levels of H2O2 in chloroplasts. Spectroscopic analysis and electron transport measurements show that PSII activity was significantly reduced in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements demonstrate that there was a slow electron transfer between QA and QB and decreased redox potential of QB in transgenic plants, whereas the donor side function of PSII was not affected. Immunoblot and blue native gel analyses illustrate that PSII protein accumulation was decreased greatly in transgenic plants. Our results suggest that chloroplast GR plays an important role in protecting PSII function by maintaining the electron transport in PSII acceptor side and stabilizing PSII complexes under chilling stress. Our results also suggest that the recycling of ascorbate from dehydroascorbate in the ascorbate–glutathione cycle in the chloroplast plays an essential role in protecting PSII against chilling stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.