Abstract

Tin dioxide (SnO2) nanofibers and cerium dioxide (CeO2) nanoparticles were prepared by electrospinning and hydrothermal methods, respectively. The morphology and structure of the synthesized SnO2/CeO2 samples were characterized by a variety of methods. The gas-sensing properties of the SnO2/CeO2 sensor were investigated for liquefied petroleum gas (LPG) detection at room temperature. Compared with pure SnO2 nanofibers, the SnO2/CeO2 composite sensor showed a much higher response and shorter response time for LPG sensing after doping with CeO2 nanoparticles. Furthermore, the SnO2/CeO2 composite sensor had better resistance to interference from humidity than the pure SnO2 sensor. The significantly enhanced sensing performance of the SnO2/CeO2 composite sensor for LPG can be attributed to the modification with CeO2 to increase oxygen vacancies and form a heterostructure with SnO2 nanofibers. Meanwhile, the LPG detection circuit was built to realize real-time concentration display and alarm for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.